If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-22y+24=0
a = 5; b = -22; c = +24;
Δ = b2-4ac
Δ = -222-4·5·24
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2}{2*5}=\frac{20}{10} =2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2}{2*5}=\frac{24}{10} =2+2/5 $
| 2y^2+15y=117 | | q2+ 13=17 | | 1/2(x-15/7)=3/7 | | 6x+9x=54 | | -3u=6 | | -2+11x=130 | | 5+4p=17 | | x+1/3=x/3-5 | | 24-2b=6-7(1+b) | | 17t-22-13t+-10=38 | | 6x-9x-4=-2x2 | | 1/2(6x+4)=5(3×-8) | | 3/4x=33/88 | | 3/7x+20=-25 | | a/10+9=11 | | 8x+6x=48 | | 0.4(x-1.4)=3.44 | | 5(1/5n+1)=15 | | 141-u=223 | | 2y-12=60 | | 7p+5+5p=12p | | 5(1/5n+)=15 | | 19w^2−30w+8=-6w^2 | | -1+-20x3+15x4=0 | | -259=-7-7(6-5n) | | -0.83333x-2=0.5-0.375x | | 19w2−30w+8=-6w^2 | | -5u-5=(u-5) | | 16,368=0.01r | | 2y=5y-10.5 | | 8-4k=-2-2k | | 180+0.15x=258 |